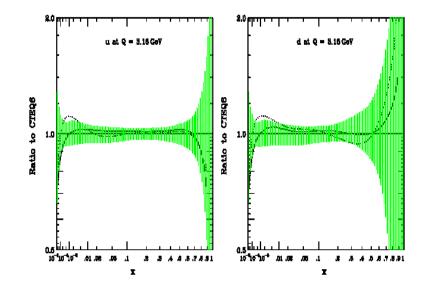
CTEQ Studies of Parton Distribution Functions in the Transition and DIS Regimes

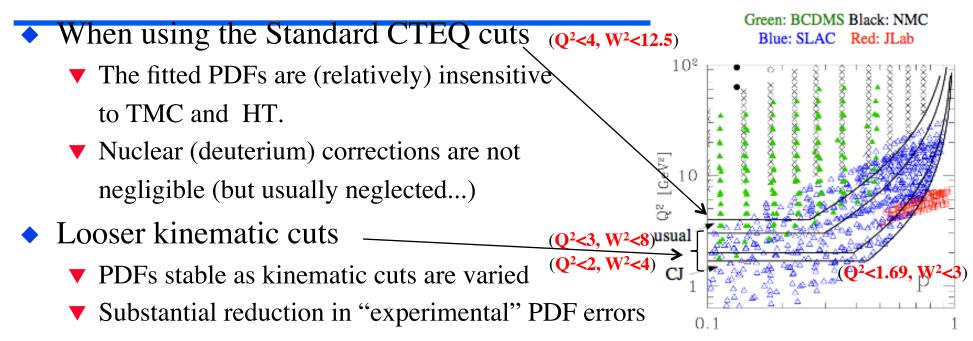
NuInt12 – Rio de Janeiro, Brazil October 2012

Jorge G. Morfin Fermilab


CTEQ

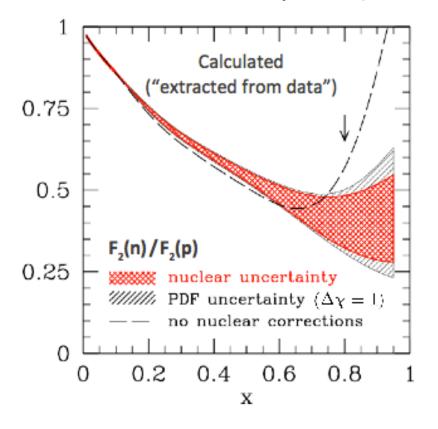
What are we doing relevant to ν -A scattering?

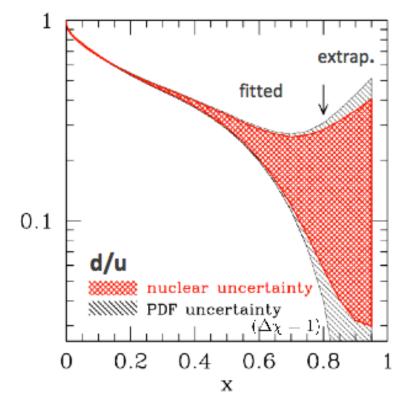
- CTEQ (Coordinated Theoretical-Experimental Project on QCD) grew out of joint work Wu-Ki Tung and I performed to produce the Morfín-Tung Parton Distribution Functions (PDFs) in 1989/90.
- ◆ CTEQ, now a collaboration of 23 theorists and 10 experimentalists, has the goal of studying both perturbative and non-perturbative QCD, organizing workshops and a yearly school on QCD Analysis and Phenomenology and global fits of data to yield PDFs.
- Three main areas of study:
 - ▼ High W/Q² Nucleon PDFs incorporating the latest LHC results (CT10/12 PDFs)
 - ▼ Study of the lower-W/higher-x region, covering transition and low-Q DIS (CTEQ Jefferson Lab collaboration)
 - Nuclear PDFs
- ◆ I'll concentrate on the last two areas in this very short review.


Higher-x, lower-W PDFs CTEQ-Jefferson Lab Collaboration

- Collaboration: A. Accardi, E. Christy, C. Keppel, W. Melnitchouk,
 P. Monaghan, J. Owens
- Goals
 - ▼ Global QCD fits of PDFs focused on large-x d & u valence quarks.
 - ▼ Improve the PDF experimental precision ("PDF errors"): increase the fitted data set
 - ▼ Include all relevant large-x / small-Q² theory corrections.
 - Quantitatively evaluate theoretical systematic errors.

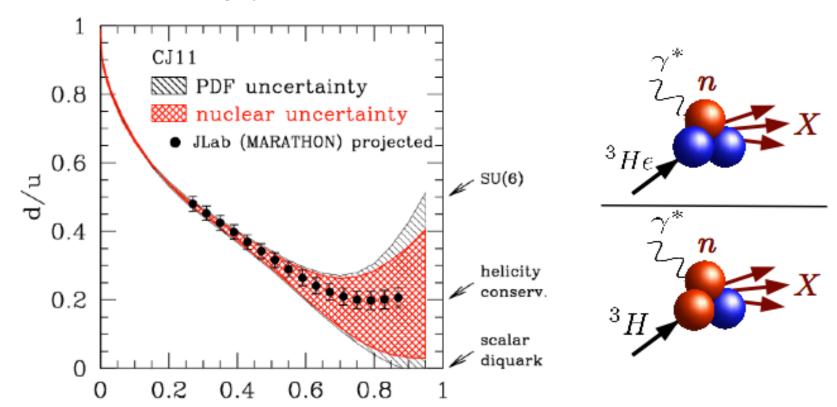
Include Target Mass Corrections (TMC) and Higher Twists (HT)


CTEQ-Jlab Results – E. Christy Presentation



- Intriguing stability with respect to Target Mass Corrections
 - ▼ The fitted HT term compensates for differences in TMC models
 - ▼ Leading-twist PDFs have little systematic error (good!)
 - ▼ HT term has $\approx 50\%$ uncertainty (not so good, if you care for this...)
- ◆ New *d*-quark parameterization requires deuterium data!
 - ▼ Large sensitivity to nuclear model for deuterium!

The CTEQ-JLab $F_2(n) / F_2(p)$ and d/u


- Well behaved extrapolation for each nuclear model
- But: large nuclear uncertainty (covers all theory predictions)
 - **▼** Nuclear uncertainty **totally masks improved statistics** from low-W² data

We need more experimental data! BONUS and MARATHON

- BONUS described by E. Christy.
- Quasi-free neutrons from MARATHON.
 - ▼ approved Jlab12 experiment.
- Nuclear corrections largely cancel in ratio of 3He/3H cross sections.

High-*x* **Structure Functions & PDFs**

v - p Scattering

$$F_{2}^{\nu p} = 2x (d + \overline{u} + s)$$

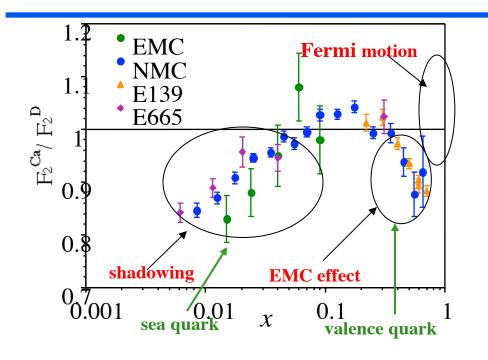
$$F_{2}^{\overline{\nu}p} = 2x (\overline{d} + u + \overline{s})$$

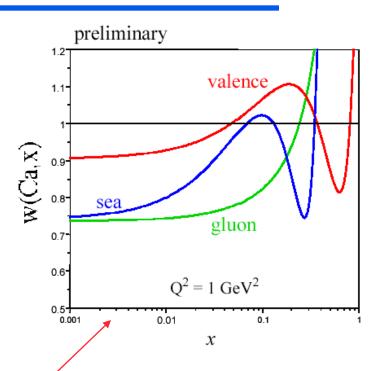
$$At high x$$

$$F_{2}^{\overline{\nu}p} \approx \underline{d}$$

$$F_{2}^{\overline{\nu}p} \qquad u$$

Add in...


$$xF_3^{\nu p} = 2x (d - \overline{u} + s)$$
 $F_2^{\nu p} - xF_3^{\nu p} = 4x\overline{u}$
 $xF_3^{\nu p} = 2x (-\overline{d} + u - \overline{s})$ $F_2^{\nu p} + xF_3^{\nu p} = 4xu$


MINER ν A future Run with H_2 in the Cryo-target and NuMI HE beam?

Speaking of Nuclear Effects in Neutrino Interactions

- Target nucleon in motion spectral functions (Benhar et al.)
- Certain reactions prohibited Pauli suppression
- Quasi-elastic form factors are modified within the nuclear environment. (Butkevich / Kulagin, Tsushima et al.)
- Meson exchange currents: multi-nucleon initial states
- Produced topologies are modified by final-state interactions modifying topologies and reducing detected energy.
 - ▼ Convolution of $\delta\sigma(n\pi)$ x formation zone uncertainties x π -absorption uncertainties yield larger oscillation-parameter systematics
- Cross sections and structure functions are modified and parton distribution functions within a nucleus are different than in an isolated nucleon. Observations from an on-going CTEQ analysis.

Experimental Studies of (Parton-level) Nuclear Effects with Neutrinos: until recently - essentially NON-EXISTENT

- F_2 / nucleon changes as a function of A. Specifically measured in μ /e A not in ν A
- ♦ Good reason to consider nuclear effects are DIFFERENT in ν A.
 - **▼** Presence of axial-vector current.
 - **▼** SPECULATION: Stronger shadowing for **v** -A but somewhat weaker "EMC" effect.
 - **▼** Different nuclear effects for valance and sea --> different shadowing for xF_3 compared to F_2 .

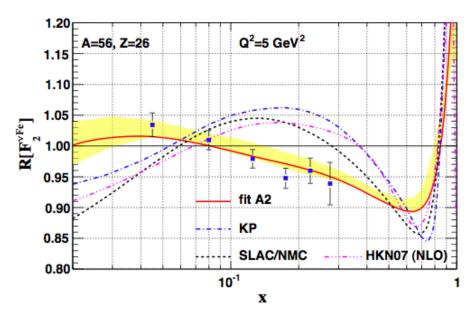
Addressing the lack of $F_2^{\mathbf{v}}$ Nuclear Effects Analyses

Nuclear PDFs from neutrino deep inelastic scattering

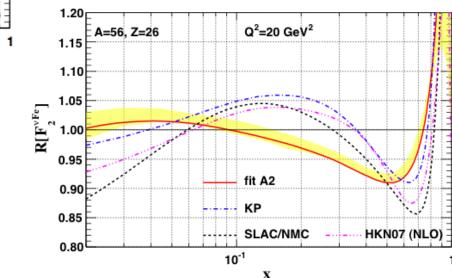
nCTEQ

K. Kovarik (Karlsruhe) I. Schienbein (LPSC-Grenoble), J-Y. Yu (SMU), C. Keppel (Hampton/JeffersonLab) J.G.M. (Fermilab), F. Olness (SMU), J.F. Owens (Florida State U)

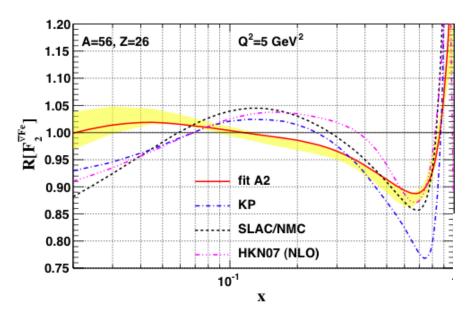
Also analyses by:

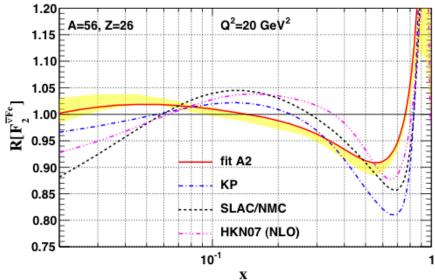

K. Eskola, V. Kolhinen and C. Salgado and

D. de Florian, R. Sassot, P. Zurita and M. Stratmann

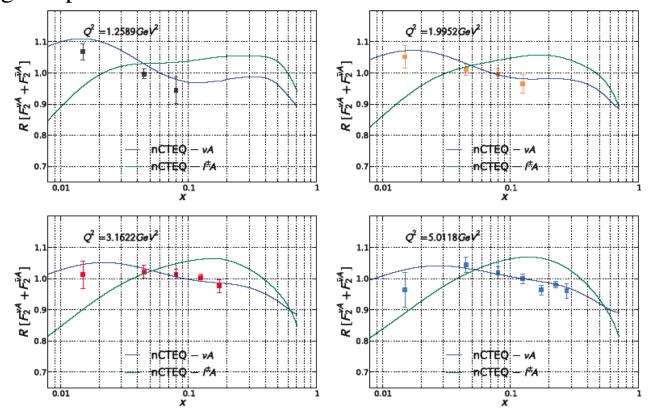

CTEQ High-x Study: nuclear effects ratio A/D_2 No high-statistics D_2 data – "make it" from PDFs

- Form reference fit mainly nucleon (as opposed to nuclear) scattering results:
 - lacktriangle BCDMS results for F_2^p and F_2^d
 - **▼** NMC results for F_2^p and F_2^d/F_2^p
 - \checkmark H1 and ZEUS results for F_2^p
 - ▼ CDF and DØ result for inclusive jet production
 - ▼ CDF results for the W lepton asymmetry
 - ▼ E-866 results for the ratio of lepton pair cross sections for pd and pp interactions
 - ▼ E-605 results for dimuon production in pN interactions.
- Correct for deuteron nuclear effects

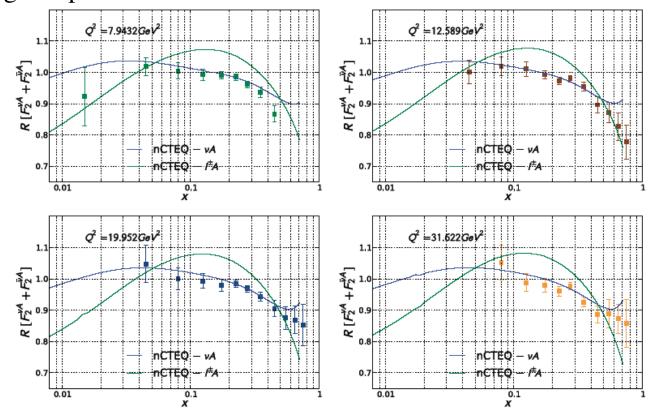

F₂ Structure Function Ratios: ν-Iron


$$\frac{F_2(v + Fe)}{F_2(v + [n+p])}$$

F₂ Structure Function Ratios: $\overline{\nu}$ -Iron



$$\frac{F_2(v + Fe)}{F_2(v + [n+p])}$$


A More-Detailed Look at Differences

- NLO QCD calculation of $\frac{F_2^{\nu A} + F_2^{\bar{\nu} A}}{2}$ in the ACOT-VFN scheme
 - ▼ charge lepton fit undershoots low-x data & overshoots mid-x data
 - ▼ low-Q² and low-x data cause tension with the shadowing observed in charged lepton data

A More-Detailed Look at Differences

- NLO QCD calculation of $\frac{F_2^{\nu A} + F_2^{\bar{\nu} A}}{2}$ in the ACOT-VFN scheme
 - ▼ charge lepton fit undershoots low-x data & overshoots mid-x data
 - ▼ low-Q² and low-x data cause tension with the shadowing observed in charged lepton data

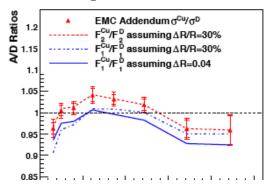
Combined Analysis of ν A, ℓ A and DY data

Kovarik, Yu, Keppel, Morfín, Olness, Owens, Schienbein, Stavreva

- ◆ Take an earlier analysis of ℓ[±]A data sets (built in A-dependence)
 - ▼ Schienbein, Yu, Kovarik, Keppel, Morfin, Olness, Owens,
 - ▼ PRD80 (2009) 094004
- For $\ell^{\pm}A$ take $F_2(A)/F_2(D)$ and $F_2(A)/F_2(A')$ and DY $\sigma(pA)/\sigma(pA')$
 - **▼** 708 Data points with Q > 2 and W > 3.5
- Use 8 Neutrino data sets
 - ▼ NuTeV cross section data: νFe , $\overline{\nu} Fe$
 - ▼ NuTeV dimuon off Fe data
 - ▼ CHORUS cross section data: νPb , $\overline{\nu} Pb$
 - ▼ CCFR dimuon off Fe data
- Initial problem, with standard CTEQ cuts of Q > 2 and W > 3.5 neutrino data points (3134) far outnumber $\ell^{\pm}A$ (708).

Try to Find a Simultaneous Fit to Both $/\pm$ and \vee Quantitative χ^2 Analysis of a Combined Fit

- Up to now we are giving a qualitative analysis. Consider next quantitative criterion based on χ^2
- Introduce "tolerance" (T). Condition for compatibility of two fits: The 2nd fit χ^2 should be within the 90% C.L. region of the first fit χ^2
- ◆ Charged: 638.9 ± 45.6 (best fit to charged lepton and DY data)
- ◆ Neutrino: 4192 ± 138 (best fit to only neutrino data)


Weight	Fit name	ℓ data	χ^2	ν data	χ^2	total χ^2 (/pt)
w = 0	decut3	708	639	-	nnnn NO	639 (0.90)
w = 1/7	glofac1a	708	645 YES	3134	4710 NO	5355 (1.39)
w = 1/4	glofac1c	708	654 YES	3134	4501 NO	5155 (1.34)
w = 1/2	glofac1b	708	680 YES	3134	4405 NO***	5085 (1.32)
w = 1	global2b	708	736 NO	3134	4277 YES	5014 (1.30)
$w = \infty$	nuanua1	-	nnn NO	3134	4192	4192 (1.33)

Others Do NOT Find this Difference between / and v

- ◆ The analyses of K. Eskola et al. and D. de Florian et al. do not find this difference between /*-A and v-A scattering.
- They do not use the full covariant error matrix rather adding statistical and systematic errors in quadrature.
- ◆ They do not use the full double differential cross section rather they use the extracted structure functions which involve assumptions:
 - ▼ Assume a value for $\Delta x F_3$ (= $F_3^{\text{v}} F_3^{\text{v}}$) from theory.
 - ▼ Assume a value for $R = F_L / F_T$.
- ◆ If nCTEQ makes these same assumptions, than a combined solution of /*-A and v-A scattering can be found.

If Difference between both /*-A and v-A persists?

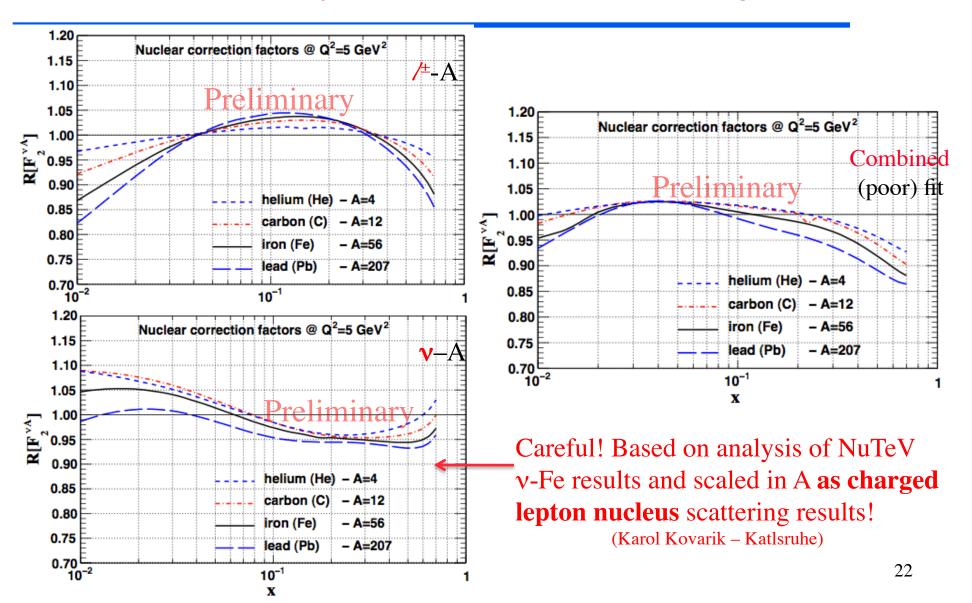
- In neutrino scattering, low- Q^2 is dominated by the (PCAC) part of the axial-vector contribution of the longitudinal structure function F_L .
- Shadowing is led by F_T and the shadowing of F_L lags at lower x.

V. Guzey et al. arXiv 1207.013

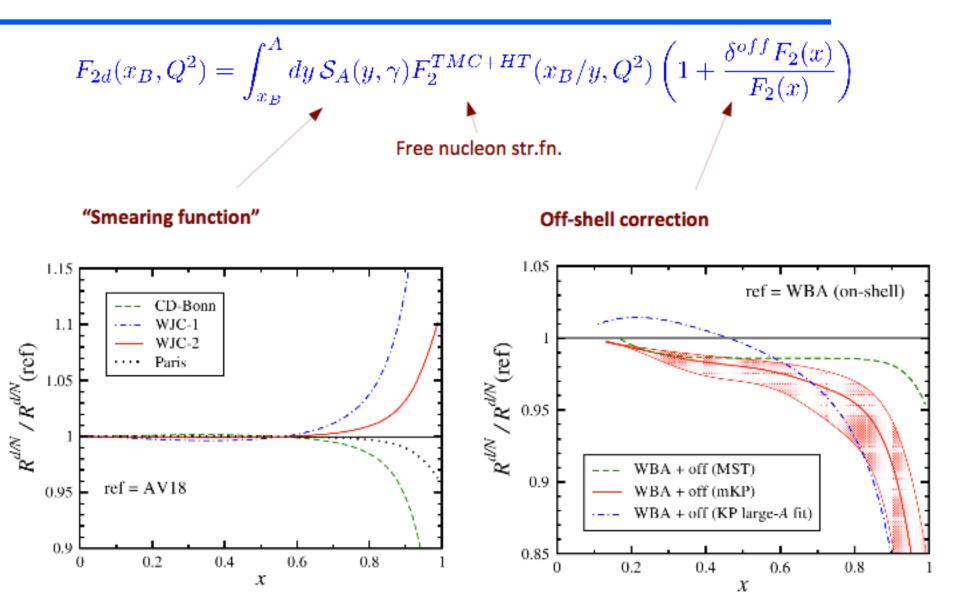
- ightharpoonup F_1 (Blue) is purely transverse and F_2 (Red) is a sum of F_T (F_1) and F_L
- This could be a contributing factor to such a difference.
- Another idea also from Guzey and colleagues is the observation that (in leading order): $\frac{d\sigma^{\nu A}}{dxdy} = \frac{G_F^2 M_W^4}{(O^2 + M_\pi^2)^2} \frac{ME}{\pi} 2x \left[d^A + s^A + (1 y)^2 (\bar{u}^A + \bar{c}^A) \right]$

$$\frac{d\sigma^{\bar{\nu}A}}{dxdy} = \frac{G_F^2 M_W^4}{(Q^2 + M_W^2)^2} \frac{ME}{\pi} 2x \left[\bar{d}^A + \bar{s}^A + (1-y)^2 (u^A + c^A) \right]$$

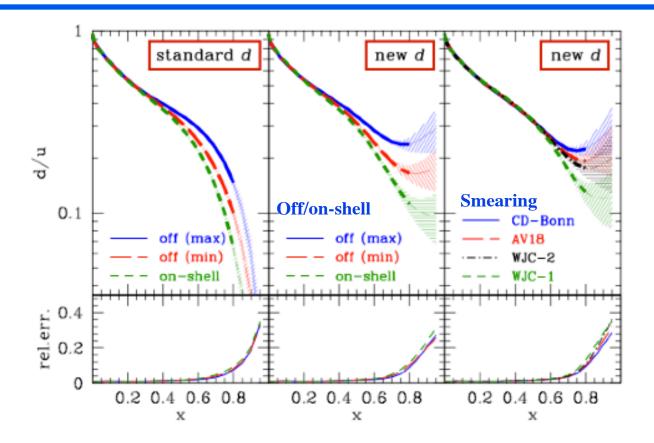
▼ In the shadowing region at low-x, y is large and the σ_v are primarily probing the d- and s-quarks. If shadowing of the d and/or s quark negligible could contribute to the result.


Summary and Conclusions

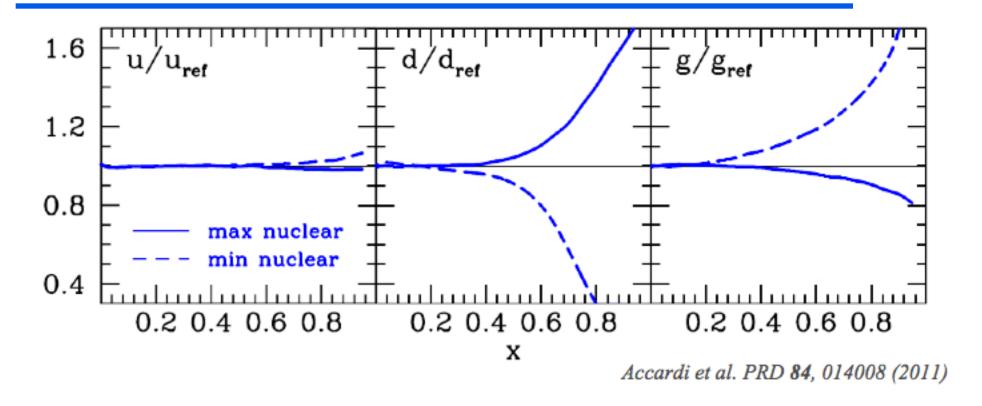
- ◆ CTEQ-Jlab studies of high-x PDFs hampered by large uncertainty in nuclear theory of deuterium larger d-quark as $x \rightarrow 1$ favored.
- ◆ nCTEQ finds indications from one experiment using one nucleus that v-induced parton-level nuclear effects are different than l[±]nuclear effects.
 - ▼ Based on nuclear corrections factors R and the tolerance criterion, there is no good compromise fit to the $\ell^{\pm}A + DY + vA$ data.
- ♦ If these differences between ℓ^{\pm} -A and ∇ -A scattering persist in shadowing region, the difference may (partially?) be due to the large contribution of F_L at low Q^2 in ∇ -A scattering and/or shadowing of the strange quark.
- ◆ Need systematic experimental study of v-induced nuclear effects in A and D₂ such as MINERvA in the ME Beam.


Additional Details

What could MINERvA Contribute?


Preliminary Predictions for MINERvA Targets

Nuclear corrections – theoretical uncertainty



CJ fits: new d-quark results

◆ Dramatic increase in d PDF in $x \rightarrow 1$ limit with more flexible parameterization

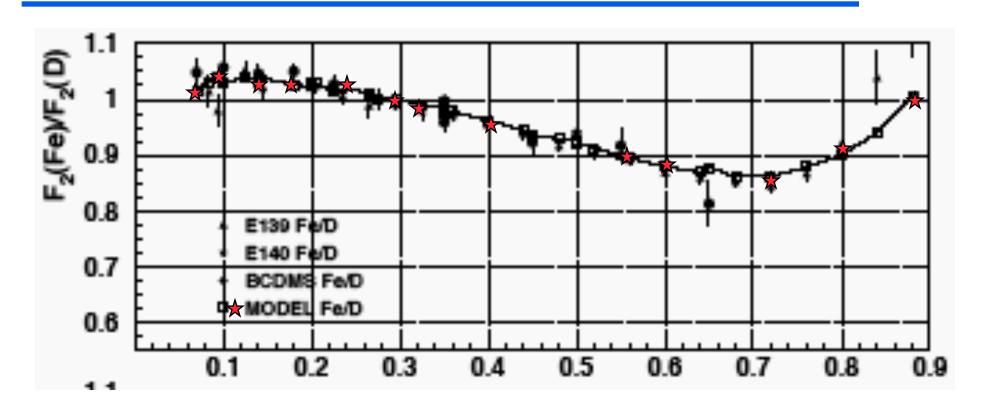
Nuclear Model Systematic Errors

- Large sensitivity to the model for nuclear corrections
 - \checkmark d-quarks: directly due to corrections applied to $F_2(d)$
 - ▼ gluons: indirectly- due to correlations induced by jet data

Kulagin-Petti Model of Nuclear Effects

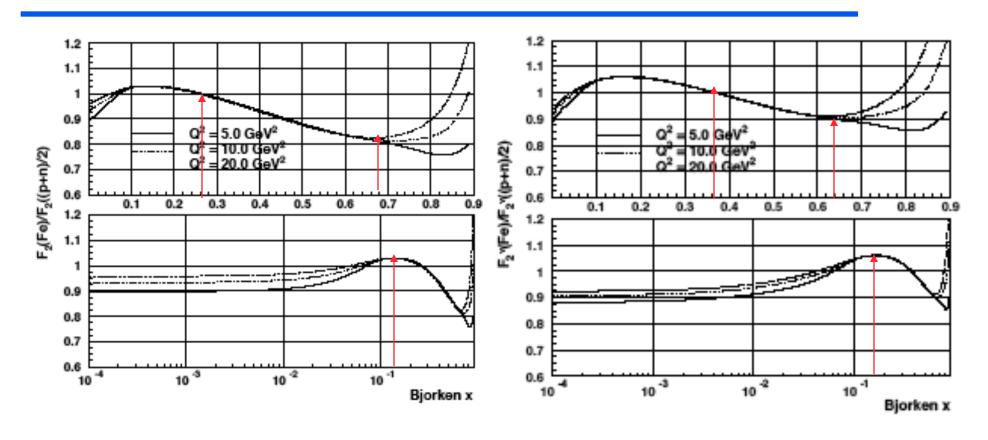
hep-ph/0412425

- Global Approach -aiming to obtain quantitative calculations covering the complete range of x and Q^2 available with thorough physics basis for fit to data.
- Different effects on structure functions (SF) are taken into account:


$$F_i^A = F_i^{p/A} + F_i^{n/A} + F_i^{\pi/A} + \delta F_i^{\text{coh}}$$

- ullet $F_i^{p(n)/A}$ bound proton(neutron) SF with Fermi Motion, Binding (FMB) and Off-Shell effect (OS)
- $F_i^{\pi/A}$ nuclear Pion excess correction (PI)
- δF_i^{coh} contribution from coherent nuclear interactions: Nuclear Shadowing (NS)
- ◆ **Fermi Motion** and **Binding** in nuclear structure functions is calculated from the convolution of nuclear spectral function and (bound) nucleon SFs:
- Since bound nucleons are off-mass shell there appears dependence on the nucleon virtuality $\kappa^2 = (M + \varepsilon)^2 k^2$ where we have introduced an off-shell structure function $\delta f_2(x)$

$$F_2(x, Q^2, k^2) = F_2(x, Q^2) \left(1 + \delta f_2(x)(k^2 - M^2)/M^2\right)$$


◆ Leptons can scatter off mesons which mediate interactions among bound nucleons yielding a **nuclear pion correction** 26

Kulagin-Petti compared to e/μ +Fe data $F_2(e/\mu$ +Fe) / $F_2(e/\mu$ +D)

Charged Lepton

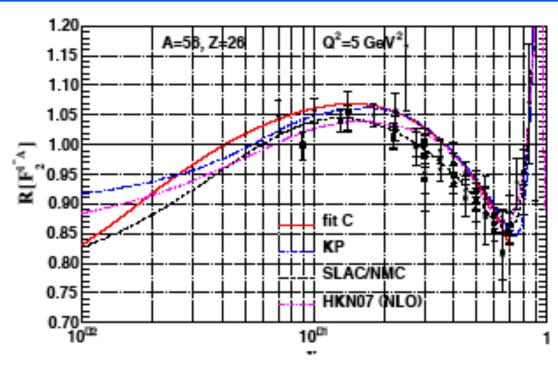
$F_2(\mu+Fe)/F_2(\mu+N)$ compared to $F_2(\nu+Fe)/F_2(\nu+N)$

Charged Lepton

Neutrino

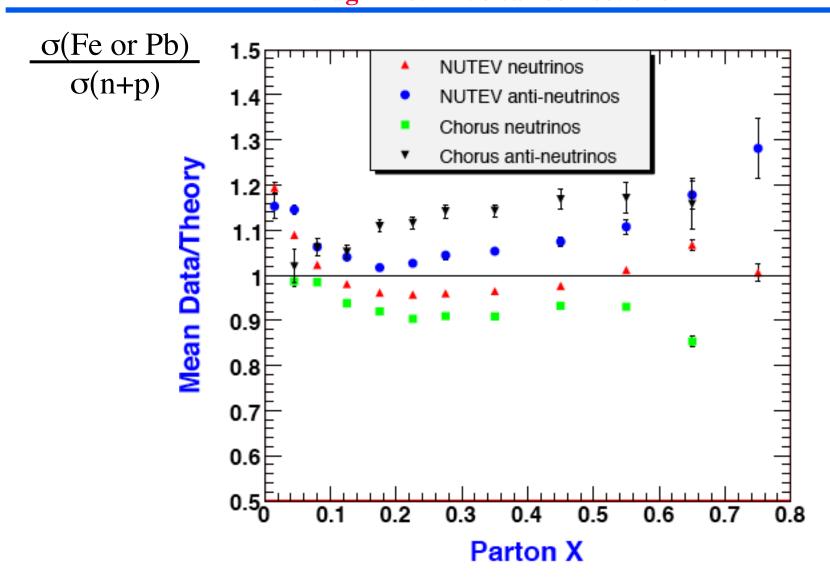

$F_2(\mathbf{v}+\mathbf{A}) / F_2(\mathbf{v}+\mathbf{N})$

(n excess included in effect)

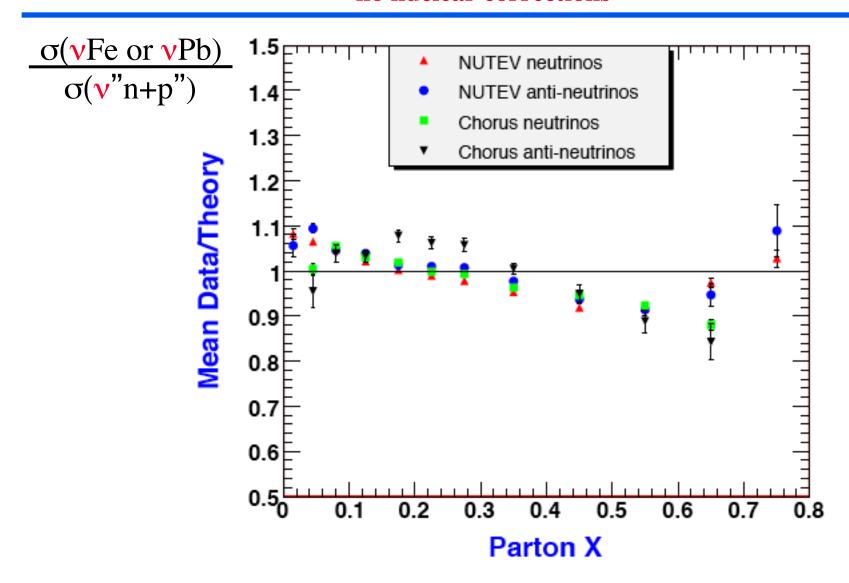


Fe Pb

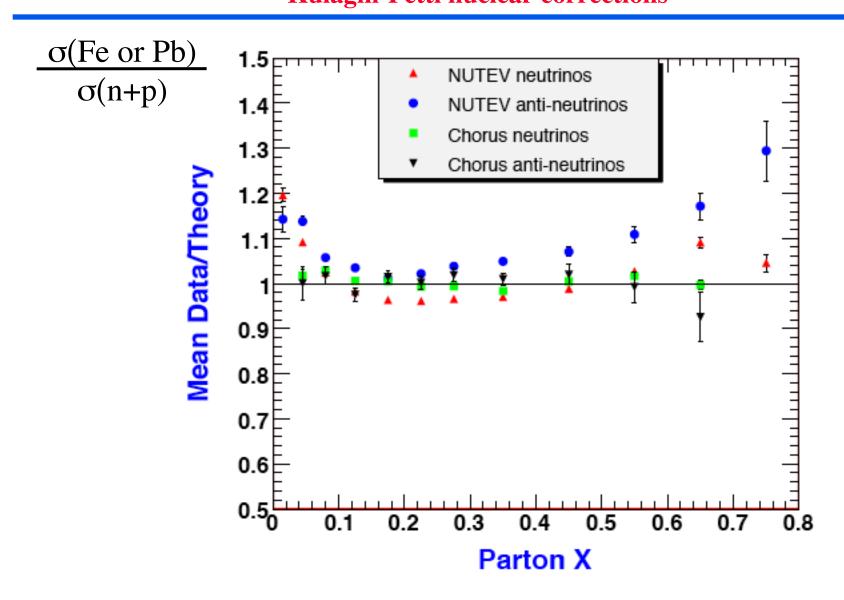
Kulagin-Petti: v-Fe Nuclear Effects



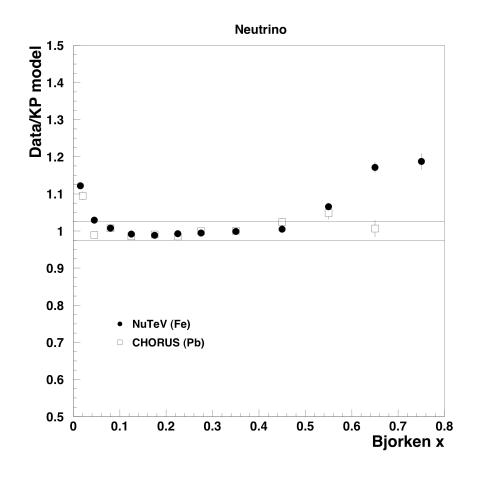
Nuclear Structure Function Corrections ℓ^{\pm} (Fe/D₂)

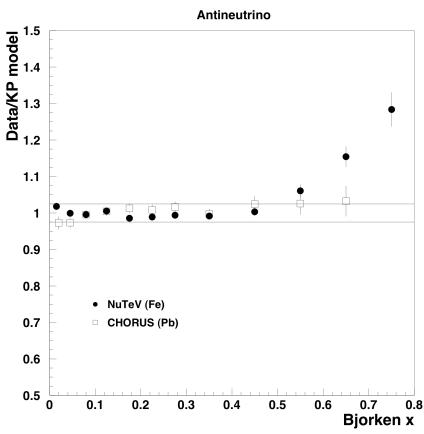


- F_2 / nucleon changes as a function of A. Measured in μ /e A, **not in \nu A**
- ◆ Good reason to consider nuclear effects are DIFFERENT in ν A.
 - **▼** Presence of axial-vector current.
 - **▼** Different nuclear effects for valance and sea --> different shadowing for xF_3 compared to F_2 .


NuTeV $\sigma(Fe)$ & CHORUS $\sigma(Pb)$ ν scattering (un-shifted) results compared to reference fit Kulagin-Petti nuclear corrections

NuTeV(Fe) and CHORUS (Pb) ν scattering (unshifted) σ results compared to reference fit no nuclear corrections




NuTeV σ(Fe) & CHORUS σ(Pb) ν scattering (shifted) results compared to reference fit Kulagin-Petti nuclear corrections

Comparison of Data to the Kulagin-Petti Model

thanks to Roberto Petti

Extraction of Nuclear PDFs and Nuclear Correction Factors from v–A Scattering

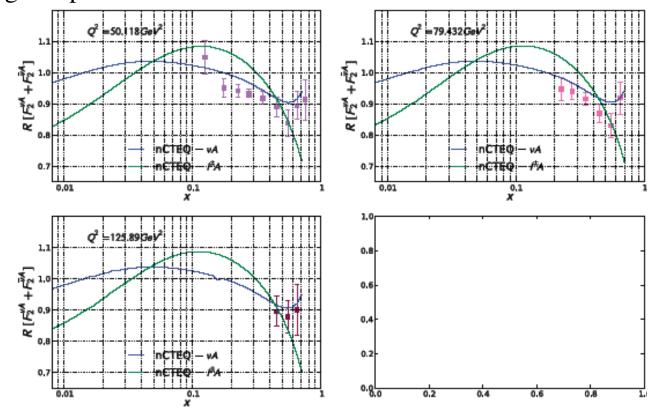
• PDF Parameterized at $Q_0 = 1.3$ GeV as

$$xf_{i}(x,Q_{0}) = \begin{cases} A_{0}x^{A_{1}}(1-x)^{A_{2}}e^{A_{3}x}(1+e^{A_{4}}x)^{A_{5}} & : i = u_{v}, d_{v}, g, \bar{u} + \bar{d}, s, \bar{s}, \\ A_{0}x^{A_{1}}(1-x)^{A_{2}} + (1+A_{3}x)(1-x)^{A_{4}} & : i = \bar{d}/\bar{u}, \end{cases}$$

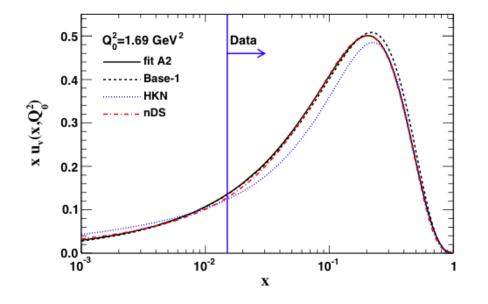
PDFs for a nucleus are constructed as:

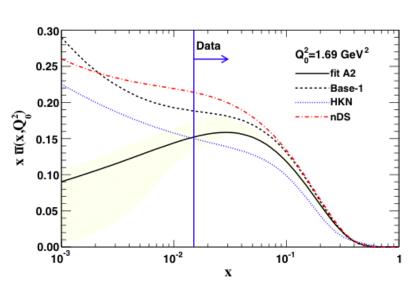
$$f_i^A(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{(A-Z)}{A} f_i^{n/A}(x,Q)$$

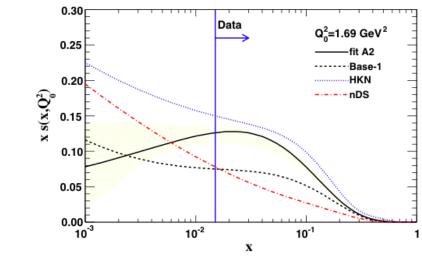
Resulting in nuclear structure functions:


$$F_i^A(x,Q) = \frac{Z}{A} F_i^{p/A}(x,Q) + \frac{(A-Z)}{A} F_i^{n/A}(x,Q)$$

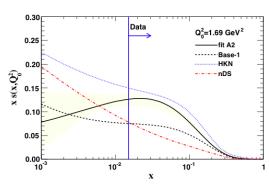
◆ The differential cross sections for CC scattering off a nucleus::


$$\begin{split} \frac{d^2\sigma}{dx\,dy}^{(\bar{\nu})A} &= \frac{G^2ME}{\pi} \left[(1-y-\frac{M\,xy}{2E}) F_2^{(\bar{\nu})A} \right. \\ &+ \left. \frac{y^2}{2} 2x F_1^{(\bar{\nu})A} \pm y (1-\frac{y}{2}) x F_3^{(\bar{\nu})A} \right] \end{split}$$


A More-Detailed Look at Differences


- NLO QCD calculation of $\frac{F_2^{\nu A} + F_2^{\bar{\nu} A}}{2}$ in the ACOT-VFN scheme
 - ▼ charge lepton fit undershoots low-x data & overshoots mid-x data
 - ▼ low-Q² and low-x data cause tension with the shadowing observed in charged lepton data

Iron PDFs



If Difference between both /±-A and v-A persists?

 Another idea also from Guzey and colleagues is the observation that (in leading order):

$$\begin{split} \frac{d\sigma^{\nu A}}{dxdy} &= \frac{G_F^2 M_W^4}{(Q^2 + M_W^2)^2} \frac{ME}{\pi} 2x \left[d^A + s^A + (1-y)^2 (\bar{u}^A + \bar{c}^A) \right] \\ \frac{d\sigma^{\bar{\nu}A}}{dxdy} &= \frac{G_F^2 M_W^4}{(Q^2 + M_W^2)^2} \frac{ME}{\pi} 2x \left[\bar{d}^A + \bar{s}^A + (1-y)^2 (u^A + c^A) \right] \end{split}$$

- ▼ In the shadowing region at low-x, y is large and the σ_v are primarily probing the d- and s-quarks.
- ◆ This is very different from l[±] scattering where the d- and s-quarks are reduced by a factor of 4 compared to the u- and c-quarks.
 - ▼ If shadowing of the d- or s-quarks is negligible this would explain the NuTeV result.
 - ▼ Diminished shadowing of the nuclear s-quark is suggested by early extraction of nPDFs by nCTEQ.

